国科网

2025-03-15 01:12:18  星期六
立足国科融媒,服务先进科技
软硬约束下的轨迹如何生成,理论&代码详解!

点赞

0
发布时间:2024年01月12日 浏览量:173次 所属栏目:人工智能 发布者:田佳恬

本文经自动驾驶之心公众号授权转载,转载请联系出处。

本项目代码:

github.com/liangwq/robot_motion_planing

轨迹约束中的软硬约束

前面的几篇文章已经介绍了,轨迹约束的本质就是在做带约束的轨迹拟合。输入就是waypoint点list,约束条件有两种硬约束和软约束。所谓硬约束对应到数学形式就是代价函数,硬约束对应的就是最优化秋季的约束条件部分。对应到物理意义就是,为了获得机器人可行走的安全的轨迹有:

  1. 把轨迹通过代价函数推离障碍物的方式
  2. 给出障碍物之间的可行走凸包走廊,通过硬约束让机器人轨迹必须在凸包走廊行走

上图展示的是软硬约束下Bezier曲线拟合的求解的数学框架,以及如何把各种的约束条件转成数学求解的代价函数(软约束)或者是求解的约束条件(软约束)。image.png

上面是对常用的代价函数约束的几种表示方式的举例。image.png

Bezier曲线拟合轨迹

前面已经一篇文章介绍过贝赛尔曲线拟合的各种优点:

  • 端点插值。贝塞尔曲线始终从第一个控制点开始,结束于最后一个控制点,并且不会经过任何其他控制点。
  • 凸包。贝塞尔曲线 ( ) 由一组控制点 完全限制在由所有这些控制点定义的凸包内。
  • 速度曲线。贝塞尔曲线 ( ) 的导数曲线 ′( ) 被称为速度曲线,它也是一个由控制点定义的贝塞尔曲线,其中控制点为 ∙ ( +1− ),其中 是阶数。
  • 固定时间间隔。贝塞尔曲线始终在 [0,1] 上定义。

Fig1.一段轨迹用bezier曲线拟合image.png

上面的两个表达式对应的代码实现如下:

def bernstein_poly(n, i, t):
    """
    Bernstein polynom.
    :param n: (int) polynom degree
    :param i: (int)
    :param t: (float)
    :return: (float)
    """
    return scipy.special.comb(n, i) * t ** i * (1 - t) ** (n - i)

def bezier(t, control_points):
    """
    Return one point on the bezier curve.
    :param t: (float) number in [0, 1]
    :param control_points: (numpy array)
    :return: (numpy array) Coordinates of the point
    """
    n = len(control_points) - 1
    return np.sum([bernstein_poly(n, i, t) * control_points[i] for i in range(n + 1)], axis=0)

分享说明:转发分享请注明出处。

    热点图讯
    最新图讯
    相关图讯
    网站简介  |   联系我们  |   广告服务  |   监督电话
    本网站由国科网运营维护 国科网讯(北京)技术有限公司版权所有  咨询电话:010-88516927
    地址:北京市海淀区阜石路甲69号院1号楼1层一单元114
    ICP备案号:京ICP备15066964号-8   违法和不良信息举报电话:010-67196565
    12300电信用户申诉受理中心   网络违法犯罪举报网站   中国互联网举报中心   12321网络不良与垃圾信息举报中心   12318全国文化市场举报网站
    代理域名注册服务机构:阿里巴巴云计算(北京)有限公司