国科网

2025-05-17 07:08:56  星期六
立足国科融媒,服务先进科技
突破Pytorch核心点,优化器 !!

点赞

0
发布时间:2024年01月05日 浏览量:127次 所属栏目:人工智能 发布者:田佳恬

嗨,我是小壮!

今儿咱们聊聊Pytorch中的优化器。

优化器在深度学习中的选择直接影响模型的训练效果和速度。不同的优化器适用于不同的问题,其性能的差异可能导致模型更快、更稳定地收敛,或者在某些任务上表现更好。

因此,选择合适的优化器是深度学习模型调优中的一个关键决策,能够显著影响模型的性能和训练效率。

PyTorch本身提供了许多优化器,用于训练神经网络时更新模型的权重。

常见优化器

咱们先列举PyTorch中常用的优化器,以及简单介绍:

(1) SGD (Stochastic Gradient Descent)

随机梯度下降是最基本的优化算法之一。它通过计算损失函数关于权重的梯度,并沿着梯度的负方向更新权重。

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

分享说明:转发分享请注明出处。

    热点图讯
    最新图讯
    相关图讯
    网站简介  |   联系我们  |   广告服务  |   监督电话
    本网站由国科网运营维护 国科网讯(北京)技术有限公司版权所有  咨询电话:010-88516927
    地址:北京市海淀区阜石路甲69号院1号楼1层一单元114
    ICP备案号:京ICP备15066964号-8   违法和不良信息举报电话:010-67196565
    12300电信用户申诉受理中心   网络违法犯罪举报网站   中国互联网举报中心   12321网络不良与垃圾信息举报中心   12318全国文化市场举报网站
    代理域名注册服务机构:阿里巴巴云计算(北京)有限公司