译者 | 李睿
审校 | 重楼
2023年11月6日,OpenAI公司对外发布了ChatGPT。在这个无代码平台上,专业(或业余)开发人员可以使用工具和提示构建定制的GPT或聊天机器人,有效地改变他们与OpenAI GPT的交互。以前的交互(LangChain或LlamaIndex)强制使用动态提示从GPT检索响应。现在,OpenAI GPT通过调用外部API或工具来处理动态提示。
这也改变了开发人员在MyScale构建RAG系统的方式,从构建带有服务器端场景的提示到将这些场景引入GPT模型。
MyScale简化了将场景引入GPT的方式。例如,OpenAI公司的方法是通过Web UI将文件上传到GPT平台。同时,MyScale允许开发使用SQL WHERE子句混合结构化数据过滤和语义搜索,以更低的成本处理和存储更大的知识库,以及在多个GPT之间共享一个知识库。
现在就可以在GPT商店试用MyScaleGPT,或者将MyScale的开放知识库与托管在Hugging Face上的API集成到应用程序中。
BYOK:采用自己的知识
GPT在过去的一年中有了很大的发展,它在共享知识领域获得的知识比最初发布时要多得多。然而,仍然有GPT一无所知或不确定的特定主题,例如特定领域的知识和当前事件。因此,正如在之前的文章所描述的,必须将存储在MyScale中的外部知识库集成到GPT中,以提高其真实性和有用性。
当开发人员使用MyScale构建RAG时,将LLM引入他们的链(或堆栈)。这一次需要将MyScale数据库带到GPT平台。不幸的是,目前还不可能直接在GPT和MyScale之间建立连接。因此,调整了查询接口,将其公开为REST API。
由于之前在OpenAI函数调用方面的成功,现在可以设计一个类似的接口,其中GPT可以使用类似SQL的过滤器字符串编写向量搜索查询。在OpenAPI中的参数如下:
"parameters": [
{
"name": "subject",
"in": "query",
"description": "A sentence or phrase describes the subject you want to query.",
"required": true,
"schema": {
"type": "string"
}
},
{
"name": "where_str",
"in": "query",
"description": "a SQL-like where string to build filter",
"required": true,
"schema": {
"type": "string"
}
},
{
"name": "limit",
"in": "query",
"description": "desired number of retrieved documents",
"schema": {
"type": "integer",
"default": 4
}
}
]
分享说明:转发分享请注明出处。