国科网

2025-05-15 01:25:11  星期四
立足国科融媒,服务先进科技
OccNeRF:完全无需激光雷达数据监督

点赞

0
发布时间:2024年02月07日 浏览量:175次 所属栏目:人工智能 发布者:田佳恬

本文经自动驾驶之心公众号授权转载,转载请联系出处。

写在前面&笔者的个人总结

近年来,3D 占据预测(3D Occupancy Prediction)任务因其独特的优势获得了学界及业界的广泛关注。3D 占据预测通过重建周围环境的 3D 结构为自动驾驶的规划和导航提供详细信息。然而,大多数现有方法依赖 LiDAR 点云生成的标签来监督网络训练。在 OccNeRF 工作中,作者提出了一种自监督的多相机占据预测方法。该方法参数化的占据场(Parameterized Occupancy Fields)解决了室外场景无边界的问题,并重新组织了采样策略,然后通过体渲染(Volume Rendering)来将占用场转换为多相机深度图,最后通过多帧光度一致性(Photometric Error)进行监督。此外,该方法利用预训练的开放词汇语义分割模型(open vocabulary semantic segmentation model)生成 2D 语义标签对模型进行监督,来赋予占据场语义信息。

图片

OccNeRF问题背景

近年来,随着人工智能技术的飞速发展,自动驾驶领域也取得了巨大进展。3D 感知是实现自动驾驶的基础,为后续的规划决策提供必要信息。传统方法中,激光雷达能直接捕获精确的 3D 数据,但传感器成本高且扫描点稀疏,限制了其落地应用。相比之下,基于图像的 3D 感知方法成本低且有效,受到越来越多的关注。多相机 3D 目标检测在一段时间内是 3D 场景理解任务的主流,但它无法应对现实世界中无限的类别,并受到数据长尾分布的影响。

3D 占据预测能很好地弥补这些缺点,它通过多视角输入直接重建周围场景的几何结构。大多数现有方法关注于模型设计与性能优化,依赖 LiDAR 点云生成的标签来监督网络训练,这在基于图像的系统中是不可用的。换言之,我们仍需要利用昂贵的数据采集车来收集训练数据,并浪费大量没有 LiDAR 点云辅助标注的真实数据,这一定程度上限制了 3D 占据预测的发展。因此探索自监督 3D 占据预测是一个非常有价值的方向。

详解OccNeRF算法

下图展示了 OccNeRF 方法的基本流程。模型以多摄像头图像  作为输入,首先使用 2D backbone 提取 N 个图片的特征 ,随后直接通过简单的投影与双线性插值获 3D 特征(在参数化空间下),最后通过 3D CNN 网络优化 3D 特征并输出预测结果。为了训练模型,OccNeRF 方法通过体渲染生成当前帧的深度图,并引入前后帧来计算光度损失。为了引入更多的时序信息,OccNeRF 会使用一个占据场渲染多帧深度图并计算损失函数。同时,OccNeRF 还同时渲染 2D 语义图,并通过开放词汇语义分割模型进行监督。

图片

Parameterized Occupancy Fields

Parameterized Occupancy Fields 的提出是为了解决相机与占据网格之间存在感知范围差距这一问题。理论上来讲,相机可以拍摄到无穷远处的物体,而以往的占据预测模型都只考虑较近的空间(例如 40 m 范围内)。在有监督方法中,模型可以根据监督信号学会忽略远处的物体;而在无监督方法中,若仍然只考虑近处的空间,则图像中存在的大量超出范围的物体将对优化过程产生负面影响。基于此,OccNeRF 采用了 Parameterized Occupancy Fields 来建模范围无限的室外场景。

图片

OccNeRF 中的参数化空间分为内部和外部。内部空间是原始坐标的线性映射,保持了较高的分辨率;而外部空间表示了无穷大的范围。具体来说,OccNeRF 分别对 3D 空间中点的  坐标做如下变化:

其中    坐标,, 是可调节的参数,表示内部空间对应的边界值, 也是可调节的参数,表示内部空间占据的比例。在生成 parameterized occupancy fields 时,OccNeRF 先在参数化空间中采样,通过逆变换得到原始坐标,然后将原始坐标投影到图像平面上,最后通过采样和三维卷积得到占据场。

Multi-frame Depth Estimation

为了实现训练 occupancy 网络,OccNeRF选择利用体渲染将 occupancy 转换为深度图,并通过光度损失函数来监督。渲染深度图时采样策略很重要。在参数化空间中,若直接根据深度或视差均匀采样,都会造成采样点在内部或外部空间分布不均匀,进而影响优化过程。因此,OccNeRF 提出在相机中心离原点较近的前提下,可直接在参数化空间中均匀采样。此外,OccNeRF 在训练时会渲染并监督多帧深度图。

下图直观地展示了使用参数化空间表示占据的优势。(其中第三行使用了参数化空间,第二行没有使用。)

图片

Semantic Label Generation

OccNeRF 使用预训练的 GroundedSAM (Grounding DINO + SAM) 生成 2D 语义标签。为了生成高质量的标签,OccNeRF 采用了两个策略,一是提示词优化,用精确的描述替换掉 nuScenes 中模糊的类别。OccNeRF中使用了三种策略优化提示词:歧义词替换(car 替换为 sedan)、单词变多词(manmade 替换为 building, billboard and bridge)和额外信息引入(bicycle 替换为 bicycle, bicyclist)。二是根据 Grounding DINO 中检测框的置信度而不是 SAM 给出的逐像素置信度来决定类别。OccNeRF 生成的语义标签效果如下:

图片

OccNeRF实验结果

OccNeRF 在 nuScenes 上进行实验,并主要完成了多视角自监督深度估计和 3D 占据预测任务。

多视角自监督深度估计

OccNeRF 在 nuScenes 上多视角自监督深度估计性能如下表所示。可以看到基于 3D 建模的 OccNeRF 显著超过了 2D 方法,也超过了 SimpleOcc,很大程度上是由于 OccNeRF 针对室外场景建模了无限的空间范围。

图片

论文中的部分可视化效果如下:

图片

3D 占据预测

OccNeRF 在 nuScenes 上 3D 占据预测性能如下表所示。由于 OccNeRF 完全不使用标注数据,其性能与有监督方法仍有差距。但部分类别(如 drivable surface 与 manmade)已达到与有监督方法可比的性能。

图片

文中的部分可视化效果如下:

图片

总结

在许多汽车厂商都尝试去掉 LiDAR 传感器的当下,如何利用好成千上万无标注的图像数据,是一个重要的课题。而 OccNeRF 给我们带来了一个很有价值的尝试。

原文链接:https://mp.weixin.qq.com/s/UiYEeauAGVtT0c5SB2tHEA

分享说明:转发分享请注明出处。

    热点图讯
    最新图讯
    相关图讯
    网站简介  |   联系我们  |   广告服务  |   监督电话
    本网站由国科网运营维护 国科网讯(北京)技术有限公司版权所有  咨询电话:010-88516927
    地址:北京市海淀区阜石路甲69号院1号楼1层一单元114
    ICP备案号:京ICP备15066964号-8   违法和不良信息举报电话:010-67196565
    12300电信用户申诉受理中心   网络违法犯罪举报网站   中国互联网举报中心   12321网络不良与垃圾信息举报中心   12318全国文化市场举报网站
    代理域名注册服务机构:阿里巴巴云计算(北京)有限公司