国科网

2025-02-06 09:59:34  星期四
立足国科融媒,服务先进科技
四种通过LLM进行文本知识图谱的构建方法对比介绍

点赞

0
发布时间:2024年01月19日 浏览量:173次 所属栏目:人工智能 发布者:田佳恬

我们在以前的文章中已经介绍了使用大语言模型将非结构化文本转换为知识图谱。但是对于知识图谱的创建是一个很复杂的过程,比如需要对属性增加限制,创建符合特定主题/模式的图谱,并且有时文档非常大,无法作为单个提示处理,所以在切分后的提示中创建的图谱需要前后一致。

所以本文将介绍和比较使用LLM转换非结构化文本的四种方法,这些方法在不同的场景中都可能会用到。

使用LLM预训练本体(ontologies)

LLM似乎已经接受了各种标准本体(如SCHEMA)的预先培训。ORG, FOAF, SKOS, RDF, RDFS, OWL等。所以通过适当的系统提示来指导使用这个预训练的本体,再加上包含非结构化文本的用户提示,我们可以获得想要的转换后的图谱结构。

提示如下

Translate the following user text to an RDF graph using the RDF, RDFS, and OWL ontologies formatted as TTL.
 Use the prefix ex: with IRI <http://example.com/>; for any created entities.

分享说明:转发分享请注明出处。

    热点图讯
    最新图讯
    相关图讯
    网站简介  |   联系我们  |   广告服务  |   监督电话
    本网站由国科网运营维护 国科网讯(北京)技术有限公司版权所有  咨询电话:010-88516927
    地址:北京市海淀区阜石路甲69号院1号楼1层一单元114
    ICP备案号:京ICP备15066964号-8   违法和不良信息举报电话:010-67196565
    12300电信用户申诉受理中心   网络违法犯罪举报网站   中国互联网举报中心   12321网络不良与垃圾信息举报中心   12318全国文化市场举报网站
    代理域名注册服务机构:阿里巴巴云计算(北京)有限公司