1、简介
生成式人工智能无疑是一个改变游戏规则的技术,但对于大多数商业问题来说,回归和分类等传统的机器学习模型仍然是首选。
想象一下像私募股权或风险投资这样的投资者如何利用机器学习。要回答这样的问题,首先必须了解投资者关注的数据以及它是如何被使用的。投资公司的决策不仅仅基于可量化的数据,如支出、增长和烧钱率等,还包括创始人的记录、客户反馈、产品体验等定性数据。
本文将介绍线性回归的基础知识,可以在这里找到完整的代码。
【代码】:https://github.com/RoyiHD/linear-regression
2、项目设置
本文将使用Jupyter Notebook进行这个项目。首先导入一些库。
导入库
# 绘制图表
import matplotlib.pyplot as plt
# 数据管理和处理
from pandas import DataFrame
# 绘制热力图
import seaborn as sns
# 分析
from sklearn.metrics import r2_score
# 用于训练和测试的数据管理
from sklearn.model_selection import train_test_split
# 导入线性模型
from sklearn.linear_model import LinearRegression
# 代码注释
from typing import List
分享说明:转发分享请注明出处。